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A SUCCESS-RUN EQUATION FOR DETECTION APPLICATIONS

INTRODUCTION

The design of underwater detection and communication systems often involves the
structuring of sensor or data-transmission stations in a line or a barrier configuration with
the sensors electrically in parallel. In this configuration stations may become inoperative
in some random manner, and the probability of survival is usually described mathematically
as an exponential function of time. In general the operation of groups of stations is with-
out replacement, so that failures can be tolerated to some predetermined level. In multi-
station detection barriers, station failures result in a loss of coverage by portions of the
barrier. When detection barriers are designed to provide overlapping coverage, the loss of
single sensor stations does not significantly affect total system coverage. However the
loss of adjacent stations generates gaps in coverage.

The probability that a system is in operation at a given time with no gaps caused by
the failure of two or more adjacent stations may be predicted using the success-run theory
developed by Feller [1]. Feller's derivation is an approximation subject to certain con-
straints on the probability of station failure and the number of consecutive failures in a
line or barrier. In this report an exact expression will be developed for the probability of
the occurrence of a success run, removing the constraints applicable to the approximate
solution. Several applications of the results to the reliability and performance of undersea
surveillance systems will be described. The success-run equation will be extended for
Markov-dependent Bernoulli trials. The Markov model is suitable for detection trials in
which alerting occurs.

DEFINITIONS OF SUCCESS RUNS

Feller's definition [1] of a success run of length r includes all disjoint runs of that
length. For example a single run of length 3 is given by the sequence FSSSF where F
denotes a failure and S a success. The sequence FSSSSSSF can be categorized as a single
run of length 6, a run of length 5, a run of length 4 followed by one of length 2 or vice
versa, as two runs of length 3, or as three runs of length 2. This definition is required
by Feller to compute recurrence probabilities and parameters from which we can deter-
mine the probability that a given sequence will occur some given number of trials after a
previous occurrence.

If we are concerned only with the probability that the first success run of length r
will occur at a given time, or only with the probability that there is no success run of
length r or greater in a given number of trials, then a success run can be defined as a
sequence of successes of length r or greater. It will be demonstrated that this loose
definition of a success run leads to the same results as Feller's definition in the computa-
tion of success-run probabilities, the mean time to the first success run, and mean recur-
rence times.

Manuscript submitted September 21, 1973.
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FELLER'S SOLUTION

The probability that a success run of length r occurs at the nth trial is Un, and fn is
the probability that the first run of length r occurs at the nth trial. Here a success run is
defined as a run of length exactly r as described in the first paragraph of the preceding
section. Following Feller the probability that all the r trials occurring in the interval
n - r + 1 to n are successful is pr (p is the probability of success on a single trial and
q = 1 - p), and it is obvious that a success run can occur at at least one of these trials.
Further it can be shown that

pr Un + Un-1P + + Unr+1Pr (1)

for n - r and ul = U2 = . r = ur-1 = 0, with uo = 1. The generating function for
Ur is shown [1] to be

1 - S + qprsr+l

s)()-prsr) (2)

From the above Feller derives the generating function of the recurrence times:

_ 1 _ ~~prs r(l -. ps)

F(s)- 1t U(s) =1 _ s + qprsr+l

Using the method of partial fractions, Feller derives the probability for the first success
run at the nth trial as

f (x- )(l-px) (4)
n (r +1- rx)q xnal

where x is the smallest root of the denominator of Eq. (3). Further the probability of
no success runs of length r in n trials is given by

qn = fn+1 + fn+2 + (5)

and is approximated using Eq. (4) by

ip 1 X (6)
Ont(r + 1- rx)q xn+1 6

The smallest root is obtained by successive approximations of the solutions to the denom-
inator of Eq. (3),

s = 1 + qprsr+l

and it can be shown to be

x = 1 + qp2 + (r + 1) (qpr)2 + .... (8)

The condition that x is the smallest root is shown by Feller to be subject to the constraint

2
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(r+1)q > 1. (9)

GENERAL REMARKS

The development of success-run probabilities by Feller assumes Bernoulli trials and
includes an implicit assumption that the counting of trials begins from an initial condition
.of a failure. That is, the zeroth trial cannot be a success, since the first success run of
length r can occur no sooner than the rth.

The development of the exact solution for Bernoulli-trial success runs continues with
this assumption, since it is consistent with many models for detection processes and reli-
ability, where the system has no output until the start of the sequence of trials. For
some detection processes, where we are concerned with holding a target for a succession
of detections, losing the target, and then regaining the target, initial conditions for a
sequence of trials include the possibility of success or failure in the zeroth trial.

A generalization of the success-run theory is provided by Thiess [2] in developing
his theory of intermittent processes. Thiess assumes that the sequence states are de-
scribed by a Markov process. This leads to success-run probabilities where successive
trials are correlated. As with Feller, Thiess assumes the initial or zeroth state to have no
output. This is equivalent to the initial state reporting a failure. Loane, Richardson,
and Boylan [3] extend Thiess' work to include the possibility of a success in the initial
state for determining the probability of k successes in n trials of a Markov process but
do not include the case of a success run of length r or greater in n trials.

Following the development of the recursive equation for independent Bernoulli
trials, we will obtain a set of recursive equations for Markov-dependent Bernoulli trials.
This solution leads to a generating function for the probability of no success runs of
length r or greater in n trials. This generating function reduces, for zero state correlation,
to the independent-Bernoulli-trial generating function with a general initial-state constraint.

RECURSIVE DEVELOPMENT

In developing a recursive solution for the probability of no success runs of length r
or more in n trials, we consider each trial in a series of trials of length n which has no
success run of length r or more to be a Bernoulli trial with probability p of success and
probability q = 1 - p of failure. The probability Qn is defined as the probability that
there is no success run of length r or greater during the n trials. A first success run may
occur at the (n + 1)th trial. The result of no success runs at the nth trial may be ob-
tained if there were no success runs in the first n - 1 trials and the nth trial resulted in a
failure; or, if the nth trial resulted in a success, the (n - 1)th trial resulted in a success,
the first n - 3 trials had no success runs, and the (n - 2)th trial was a failure, and so on.
This procedure is illustrated in Fig. 1. Thus the probability of no success runs of length
r (or greater) in n trials is given by

Qn =qQn-1 + qPQn-2 + qp 2Qn- 3 + ... + qpr-lQn- (10)

or
r

Qn= qPl'Qn-i . (11)
i= 1

3
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This equation is the exact equivalent of Feller's equation 7.11. The initial conditions
are

QO = Q1 Qr-=1; Qr pr. (12)

There are no restrictions, the equation holding for all n, r, p, and q (=1 - p). For small r
Eq. (11) can readily be used with hand calculators. However for large r the number of
terms in each calculation can be large. Equation (11) can be used to obtain Feller's
equation 7.11 as shown in Appendix A. Using z transforms, Eq. (11) may be solved to
provide a closed solution form for Qn when r = 2. This is developed in Appendices A
and B.

A simpler recursive form is easily obtained. From Eq. (11) we subtract the equation
for Qn-1, giving

r r
Qn- Qn-i = E qp iQn-i _ qp--'Qn(i ) (13)

i=1 -

Expanding, we have

Qn - Qn-1 = qQn-1 + pqQn-2 + ... + qpr-lQ.n-r - qQn-2 - - qpi-2Qn-r -

Collecting terms,

Qn - Qn-1 = qQn-I - q[Qn-1 - qpr lQn-(r+l)] - qpr lQn-(r+l )

= -qprQn-(r+l)

or

Qn = Qn-i - qprQn-(r+l) (14)

The probability that there is at least one run of length r or greater is given by

Pn = 1 - Qn = Pn-1 + qpr[l - Pn-(r+l)], (15)

where

Po = P1 = P2.. Pr_ = 0; Prpr- (16)

Equation (15) has been programmed for a Hewlett-Packard 9100B calculator, and some
results for various r, n, and p are given in Fig. 2.

The mean time to the first success run is the expected number of trials to achieve a
success fun of length exactly r. At that point the count of trials is ended and a new
count is begun. This corresponds to Feller's definition of success runs. The mean time
to the first success run is shown in Appendix C to be

5
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n

Fig. 2-Probability Pn of at least one success run of length r or greater
in n trials with single-trial probability of success p

1 - p rT = - (17)
qp r

and is equal to the mean recurrent time of success runs.

The probability of exactly one run of length r and no other runs of length r or
greater can be simply derived. This probability includes various distributions with runs
of length less than r. We assume a distribution of L trials as illustrated in Fig. 3. The
distribution of trials in Fig. 3a consists of m trials with no runs of length r or greater, a
sequence of trials of length r + 2 including a success run of length r bounded by a failure
on each side, followed by L - m - (r + 2) trials with no success run of length r or greater.
Thus this represents a series of trials of length L with exactly one success run of length r.
When the end runs as shown in Fig. 3b are also taken into account, the probability of
exactly one run of length r and no other runs of length greater than r in L trials PLE(M)
is given by

6
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(a) Control run (L = m + n + r + 2)
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(b) End run

Fig. 3-Exactly one run of length r in L trials

L-(r+2)
PLE(1) = E q2pQmQL-(r+2)-,n + 2 qprQL-(r+l)-

m=O

MARKOV TRIALS

When the trials in a sequence are correlated, the results of the previous section are
modified. We consider the sequence of trials to be Markov dependent; that is, the proba-
bilities for each trial depend only on the outcome of the previous trial [4-6]. This
dependence is described by a transition probability matrix,

S F trial (j + 1)

S a a
R =_ (19)

Fbb

trial j

where the rows describe the probability of having a success S or failure F at the (j + 1)th
trial having had a success or failure in the jth trial. The total probability of obtaining a
success at the jth trial is p and the probability of a failure is q = 1 - p. It can be
shown 13,4] that the correlation coefficient c between the (j + 1)th and jth trials is
given by

(20)c = a - b.

As before, we define qn as the probability that no run of length r or greater has
occurred in n trials. Now we define two new probabilities q1 and qn as [4]

(18)

7
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qn - the probability that there is no run of length r or greater in n trials with the
nth trial ending in a success,

q' - the probability that there is no run of length r or greater in n trials with the
nth trial ending in a failure.

With these definitions it is clear that

qn = qn + qn- (21)

We further set up a matrix of trials similar to Fig. 1. If the nth trial ends in failure
with no success runs, we can write

=n = aqn- + bq- 1 . (22)

If the nth trial ends in a success with no runs, we can then write

qn = aqn_-1 + bq"-l - bari qn-r. (23)

The last term on the right excludes the possibility that the last r - 1 trials leading to the
(n.- 1)th trial were all successes followed by the rth consecutive success at the nth trial.
This case must be excluded, since the possibility of r - 1 consecutive successes is included
in the probability qn-1.

Equations (22) and (23) are the recursive equations which must be solved to obtain
qn. Adding (22) and (23), we obtain

qn = qn-1 - bar-lqW.. (24)

We must now establish the initial conditions. Two cases occur, resulting in different
values of qn and q' for n > r. The first case assumes that the first trial in the sequence
is the first trial to have occurred (there is no zeroth trial). Thus the probability of a
success at the first trial is p and the probability of a failure is q. The probability of a
success at the second trial is

P2 = ap + bq = (25a)

and the probability of a failure is

q= ap + bq - q. (25b)

Furthermore the probability of no success run at the n(< r)th trial is p if the nth
trial ends in a success and is q if the nth trial ends in a failure, since Eqs. (25a) and
(25b) are identical to (22) and (23) for n < r. Thus we state that

q = p, n < r, (26a)

q'= q, n < r. (26b)

Since qn-r = qo for n = r, we must arbitrarily assign a value to q'o. This is given as
= - p/b. This assumption is equivalent to the first trial having a probability of success = p

8
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instead of b, since there is no zeroth trial. Thus Eq. (23) for n = r becomes qr, = aqr-1
+ bq.'-j - pari1. Under this assumption it can be shown that for zero correlation the
Markov success run reduces to the Feller success run as developed earlier (Eq. (14)).

The second case of interest is when the sequence of n trials starts at some arbitrary
point in a longer sequence of trials. In this case the zeroth trial ends in either a success
or a failure. Consider that the zeroth trial has ended in a success and that the zeroth
trial success does not count toward a run. Then for the first trial we have the condi-
tional probabilities

qj = a,

PP - a
qj= a.

(27a)

(27b)

Using Eqs. (22) and (23) we obtain

Continuing and substituting Eq. (20), we obtain

qa = p + qcn, n < r and qo = q'o,

qn = q - qcn , n < r and qo = qo.

When the zeroth trial ends in a failure, the conditional
become

probabilities for the first trial

qP? = b

I t
ql = a,

Continuing as before, we obtain

qn - p - pcn, n < r and qo = q0o,

qn = q + pcn, n < r and qo = q'o'

(31a)

(31b)

The generating functions for the probability of no success runs in Markov trials is ob-
tained as in the case of Bernoulli trials (Appendix A). The generating functions are de-
termined for f'(z) and f"(z), corresponding to qn and qn. The partial functions are
summed to provide the conditional functions for the case of a success in the zeroth trial,

F(z) I (qo = q')
1 - CZ

(1-z)(1-cz) + _abar-lZr+l
(32)

and for the case of a failure in the zeroth trial,

q2 = aql '+ bq',

'2 = aqj '- bq'1 -

(28a)

(28b)

(29a)

(29b)

(30a)

(30b)

9
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F(z) I (qo = qP))=. 1 cz -- bar-lzr

(1- z)(I - cz) + ba-arlzr+l

The complete generating function is

F(z) = p[F(z) I (qO = qo)] + q[F(z) I (qo = qO)].

Substitution of Eqs. (32) and (33) into (34) yields

F1 (z) =
1 - cz - qbar-lzr

(1-z)(1-Cz) + -abar-lzr+l

The generating function ignoring the zeroth trial is obtained from Eqs.
(26) and results in

F2 (Z) =
(1 -cz)(1-par-lzr) - qbar-lczr+l

(1-z)(1-cz) + abar-lzr+l

The mean time to the first success run of length r is obtained
Thus we have for the general case, from Eq. (35),

Tj = F1 (1) =

(22), (23), and

(36)

from F(z) by setting z = 1.

1 - c - qbar-l

aba r -1

Since it can be shown that

a = p + cq,

a = q - cq,

b = p - pc,

b = q + qc,

we have

1 - pq(p+cq)r-1
T7 =

pq (1 - c) (p + cq) r -1

From Eq. (36), ignoring the zeroth trial, we obtain a mean time to a success run of

T2 = F 2 (1) =
1 - p(p + cq)r-l(1 + qc)

pq(I - c)(p + cq)r-1

(37)

The difference in mean time to success runs between the choice of initial conditions is

P + qc
T1 - T2 = A T = q qc (40)

(33)

(34)

(35)

(38)

(39)

10
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Thus ignoring the zeroth trial provides a shorter mean time to first success run than
assuming that the zeroth trial can be a success or failure.

When the correlation coefficient c = 0, we have the Bernoulli-trial case. The mean
time T2 ignoring the zeroth trial becomes

1 - pr
T2 = - (41)qpr

and the mean time T1 assuming a random zeroth trial becomes

1 - qpr
qp r (42)

The first case is equivalent to the Bernoulli-trial solution given earlier and by Feller.
However the solution in Eq. (42) is often more useful, since it models a real-world detec-
tion system operating prior to the arbitrary start of a trial count.

APPLICATIONS USING BERNOULLI TRIALS

Detection Runs

The success-run equation can be used to estimate design requirements for detection
systems whose performance is specified by the probability of obtaining a sequence of
consecutive detections over an observation span. Assume that the single-look probability
of detection is p = 0.9 and that we require a run of at least r detections out of n looks
to occur with a probability P. It is assumed that the range of the sonar is 200 n.mi., the
target speed is 10 knots, the target is in view of the sonar for 100 n.mi., and the single-
look duration is 10 minutes. This will result in 60 looks. Thus Eq. (15) becomes

pn = P60 = P5 9 + (0.9)r(0.1)(1-P59_r) * (43)

Plots of Pn vs r and p are shown in Fig. 4 for n = 60 and n = 30. A run-success proba-
bility of 0.90 is obtained for a longest run of at least 13 detections when n = 60 and
p = 0.9 and for a longest run of at least 9 detections when n = 30 and p = 0.9.

Distributed Barriers

In detecting targets transiting multiline barriers the direction of transit can be ob-
tained if at least two barrier lines detect the target. The tracking performance can be
computed using the standard binomial expansion to give the probability of making at
least two detections out of m attempts. For this model it is assumed that there are
m barriers and a target will be detected once at each barrier with a probability p. Thus
we have

P2 = 1 - qm - mpqm -1 (44)

If we introduce a further constraint and assume that tracking is achieved only when two
consecutive barrier lines detect the target, we obtain

11l
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Fig. 4-Probability in n trials, P, of at least one
success run of length r or greater

Pn = Pn- 1 + qp 2(1-Pn-3 ). (45)

If we set p = 0.5, then a value of Pn = 0.90 is obtained when n = 12. For the less re-
strictive binomial tracking, n = 7.

Reliability

A solution was developed to compute the probability that there would be no adja-
cent failures in a distributed barrier of sensors. All sensors are connected in parallel, so
that a failure does not affect other sensors. Each sensor fails according to the exponen-
tial law 1 - et/T, where T is the mean time between failures (MTBF), in standard re-
liability theory terminology. A "success" run is now defined as a run of failures. Equa-
tion (15) holds directly. A typical system might consist of 25 sensors with a sensor
MTBF of 10 years. We define a system failure to have occurred when two adjacent
sensors fail. We would like to know the probability of system failure after 1 year. Thus

P25 = P2 4 + (1- e O.1)2 (e01)(l-P22) * (46)

Now p = 1 - e- 0 -1 = 0.095, and we find that P25 = 0.82, indicating a high probability of
system failure even though the sensor probability of failure is small. Reliability perform-
ances can readily be computed for other MTBF values and for barriers or parallel systems
of any size.

12
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Classification

The results of the success-run theory can be used to provide a method of classifying
targets (distinguishing targets from nontarget sources) in regions of high false-alarm back-
grounds. For example, consider that the single-look probability of detection is 0.90 and
that a system looks at a target for n = 30 and n = 60 independent trials. From Fig. 4
we tabulate (Table 1) the probability Pn of a success run of length at least r. For each
success run against a target we show the probability of false-alarm runs in which the
single-look probabilities of false alarm are 0.01 and 0.1.

If we consider a classification criterion based on the probability of detecting a suc-
cess run of length at least r in n trials, we will obtain a set of results as will be exempli-
fied below. Let us set the single-trial probability detection p to be 0.9, the single-trial
probability of false alarm Pfa to be 0.1, and set n = 30 and r = 6. Then we will obtain
the success run PD = 0.9968 and Pfa = 2 X 10-5 . The mean time in detecting a target,
to the first success run of 6 will be 9 trials and the mean recurrence time will be 9 trials,
so that we may expect an average of 3 success runs in 30 trials. Furthermore the mean
time to the first false alarm is 106 trials.

The effect of a success-run criterion is equivalent to extending the integration time
of a processor operating on a continuous passive signal. Extending the integration time
by n looks provides a processing gain of 5 log n. In the example cited this is equivalent
to a gain of 7.5 dB. The probabilities of detection and false alarm, using the success-run
criterion of r = 6, are equivalent to a signal-to-noise-ratio increase of 7.0 dB above that
required for the single-look probabilities. In addition, since the expected number of
looks to arrive at a "detection" decision is 9, the use of success runs may fit into a
sequential detection process.

Markov-Dependent Trials

Application of the Markov-dependent Eqs. (22) and (23) to detection problems will
be described in a subsequent report.
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Appendix A

EQUIVALENCE OF EQ. (11) AND FELLER'S EQUATION 7.11

The probability of no runs of length r or greater in n independent trials is, from
Eq. (11),

(Al)Qn = q =
i=l

If we assume the n independent
transform function F(z) from

trials to be a discrete process, then we can obtain the

00

F(z) =T.

n=0

Equation (Al) can be rewritten as

r

Qn+r = q T p'-'Qn+r-i.
i=1

The transform function for Qn+r is*

G(z) = z-r[F(z) - Qo - Q1z - - - - - QrlZr-1] -

Substituting this into Eq. (A3), we have

z-r [F(z) - Qo - Q1z - * -* - Qr -Zr1l]

r
= q L pi-1z-(ri)[F(z) - Qo - Q1z -

i=1

Expanding, collecting terms, and solving for F(z), we obtain

QO + (Q1-Qoq)z + .. + (Qr-1-Qr-2q-...-Qoqr-23Zr-1

1 - qz - qpz2 - qp 2 z 3 -

*DeRusso, Roy, and Close "State Variables for Engineers," Wiley, New York, 1965.
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(A2)

(A3)

(A4)

... - QrI_izr-l-i3 .

F(z) =

(A5)

qpr -lZr
(A6)

pi lQn-i

Q -n
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Now Qo = Q1 = - = Qr-1 = 1, and Eq. (A6) reduces to

1 + pz + pz 2 + + pr-lzr-1
( - qz - qpz2 -_qprl-zr

1 - prZr
(1- pz)(t- qz- qpZ2- _. _qpr-1Zr) (7

This results in the transform for the probability of no success runs of length r in N trials:

1 - przr
F (z) = W )__ __ _ _

1 - z + qprzr+l (8

Using the solution method developed in Feller, we can obtain the probability Qn from

-P1I (A9)Qn n+I A9
Z1

where p1 is the coefficient of the (n + 1)th term in the expansion of F(z) or

U(zi)

Pi - V'(zi) (A10)

and z1 is the smallest root of V(zi) = 0. Solving (A10) and substituting in (A9), we
obtain

Pi~ p rz~r -Al1

P1 -1 + (r + 1)qpr~1 r' (All)

qprzlr - Z1 -1, (A12)
z1

and
Z1 - 1

Q + +q -1 -' (A13)
-1+ (r +1)q(z1jq) Z1 r1rz) g

which is Feller's equation 7.11.



Appendix B

EXACT SOLUTION FOR PROBABILITY OF NO SUCCESS RUNS
OF LENGTH r= 2

The transform for the case r = 2 is, from Eq. (A8),

- 1 -p 2 z 2
_ 1+ pz

F(z) = 1z + qp 2z3 = 1 - qz - qpz2

Factoring the denominator, we obtain

F(z) =

( 1
where

I= 1 + 4q

This is simplified to

F(z) = p _+
1 + 1 -

B A A
2 z-- +

I + ,/-. Z1

where

B = ,P 1--f- 4 ),

A = 1 - B.

The probability of no success runs of length r = 2 or greater in n trials is computed from
the nth coefficient of the expansion of F(z) with z = -zl and z = -zz. This results in

Qn = [ +2("F J) P ____- 1 -2p )
quaf:. (\1 + 1 + 1 V

This can be slightly simplified to the form

18

(Bi)

1 + pz

+ 2p ( 1 2p
1 - z/- I + I/zJ

(B2)

B

Z2

(B3)

(B4)
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= ( 2p j
+j (jjI; 1 - (-1) (f, 1) ,

with Qo = Q1 = 1.

The probability of one or more success runs of length 2 or greater is

Ph = 1 - Qn-

19

(B5)

(B6)



Appendix C

MEAN TIME TO THE FIRST SUCCESS RUN

The mean time to the first success run of length r in n independent trials is evaluated
from F(z), the generation function of the probability of no success runs of length r. The
mean time is the mean number of trials to the first success run.

We have defined Qn as the probability that there are no success runs of length r in
n trials. This also means that Qn is the probability that the first success run of length r
will occur at least at the (n + 1)th trial. Thus, if fin is the probability of the first success
run at the nth trial, we have

Qn = fn+l+rf+2 f+ - (Cl)

The mean time to the first success run is given by

(C2)
00

T = E kfk,

k=O

where fk is the probability of the first success run at the
using equation (Cl), that

kth trial. It can be shown,*

00 00T = 21 kfi = (C3)

k=O k=O

since the generating function for Qn is, using Eqs. (A2) and (A8) of Appendix A,

00

F(z) = E Qnz-n =

n=O

1 - przr

1 - z + qprzr+l

we have, setting z = 1,

(C5)
00

F(1) = E Qn = T.

n=O

Thus

*W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd edition, Wiley, New
York 1957.

20

(C4)
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1 = - r (C6)
qpr

The generating function of the probability fn that the first success run occurs at the nth
trial is

00

H(z) = 2 fnZ~n
n=1

(C7)

As developed by Feller the generating functions (C7) and (C4)
expression

H(z) = 1 - (1 - z) F(z) = _(1 - pz)przr
1 - z + qprZr+l

are related by the

(C8)

Differentiating H(z) results in

dH(z) - (1 z) dF(z) + F(z)-
dz dz

(C9)

Setting z = 1, we have

dH(z)
dz Z=1

= F(z)
z=1

= T. (C10)

Thus the mean time to the first success run can be developed from the generating func-
tions of either the probability of the first success run or the probability of no success
run. The mean time to the first success run is the same as Feller's mean of the recurrence
times of runs of length r (Feller's equation 7.7).

Typical results are shown in Table C1 for different values of p, the single-look proba-
bility of detection.

Table C1
Mean Number T of Independent Trials to First

Success Run of Length r

T

p= 0.9 p= 0.5 p= 0.1

1 1.11 2 10
2 2.34 6 110
3 3.72 14 1110
4 5.22 30 111,110
6 8.85 126 1,111,110

*U.S. GOVERNMENT PRINTING OFFICE:1974 542-171/Z-234 1-3
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